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Abstract

The indentation test has been developed into a popular method for investigating mechanical properties of thin
®lms. However, there exist only some empirical or semi-analytical methods for determining the hardness and

Young's modulus of a ®lm from pyramidal indentation of the ®lm on a substrate, where the deformation of ®lm
and substrate is subjected to be elastic±plastic. The aim of the present paper is to show how constitutive properties
and material parameters may be determined by using a depth-load trajectory which is related to a ®ctitious bulk ®lm

material. This bulk ®lm material is supposed to possess the same mechanical properties as the real ®lm. It is
assumed that the ®lm and the substrate exhibit elastic±plastic material properties with nonlinear isotropic and
kinematic hardening. The determination of the depth-load trajectory of the bulk ®lm is a so-called inverse problem.
This problem is solved in the present paper using both the depth-load trajectory of the pure substrate and the

depth-load trajectory of the ®lm deposited on this substrate. For this, use is made of the method of neural
networks. Having established the bulk ®lm depth-load trajectory, the set of material parameters entering in the
constitutive laws may be determined by using e.g. the method proposed by Huber and Tsakmakis (Huber, N.,

Tsakmakis, Ch., 1999. Determination of constitutive properties from spherical indentation data using neural
networks. Part II: plasticity with nonlinear isotropic and kinematic hardening. J. Mech. Phys. Solids 47, 1589±
1607). 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

It is well known that the indentation test can be employed to obtain mechanical properties of
materials. Tabor (1951) and Atkins and Tabor (1965) have shown that either a spherical indenter or
several pyramidal indenters with di�erent tip angles have to be used, when mechanical properties like
the strain±stress relation are to be investigated. For example, one can determine Young's modulus (see
e.g. Doerner and Nix, 1986; Pharr et al., 1992; Field and Swain, 1993; Huber et al., 1997), the hardening
behavior according to monotonic loading (Meyer, 1908; Tabor, 1951; Field and Swain, 1993; Jayaraman
et al., 1998), viscosity e�ects (Yu et al., 1986; Mayo and Nix, 1988; Raman and Berriche, 1992) and, as
shown recently, the parameters governing the response of nonlinear isotropic and kinematic hardening
of Armstrong Frederick type (Huber and Tsakmakis, 1999b). Note that all these methods are concerned
with bulk material only.

Analytical solutions in the literature for coating/substrate systems are restricted to small elastic
deformations and resulting integral equations have to be solved numerically in most cases. Yu et al.
(1990) discussed the e�ect of the substrate on the layer/substrate sti�ness for arbitrary indenter pro®les.
Li and Chou (1997) derived a semi-analytical solution for a spherical pro®le on a coating/substrate
system and discussed the loading response for the cases of hard/soft and soft/hard system. However, as
it has been shown by Huber et al. (1997) for bulk elastic±plastic materials and large penetrations, the
determination of Young's modulus using elastic solutions will result an error depending on the
hardening properties of the material.

Generally, if the mechanical properties of thin ®lms on substrates have to be investigated, the
methods developed for bulk materials have to be extended appropriately. For example, when pyramidal
geometries like Vickers or Berkovich indenters are used, one can obtain the mechanical properties of the
®lm by ®tting the measured data (hardness or Young's modulus plotted against the indentation depth)
with analytical solutions (Gao et al., 1992) or empirical functions (Bhattacharya and Nix, 1988; MencÏ ik
et al., 1997). The hardness or Young's modulus of the ®lm is one of the ®t parameters in the function
and is determined by least square optimization. The in¯uence of the roughness can be diminished by a
large number of measurements at the same depth, using statistical methods. This procedure needs
geometric similar indents which, however, allow only to determine the hardness and Young's modulus
of the material with a single geometry.

The purpose of the present paper is to demonstrate how elastic and plastic properties of thin ®lms on
substrates may be determined. To this end a method is developed which may be sketched as follows.
The direct problem of calculating the indentation depth-load trajectory of bulk materials or of a ®lm on
a substrate for given elasticity and hardening properties can be carried out using the Finite Element
method (see Fig. 1, continuous lines). On the other hand, one may consider the problem where the
depth-load trajectory according to spherical indentation is known and the material parameters in the
constitutive laws are sought. Huber and Tsakmakis (1999a, 1999b) solved this so-called inverse problem
for the case of bulk material exhibiting nonlinear isotropic and kinematic hardening by using neural
networks. This is denoted in Fig. 1 as box IP1. In this ®gure, h is the indentation depth, P�h� is the

Fig. 1. Direct problem (box FE) and inverse problem (box IP1) for the indentation of a bulk material.
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corresponding load, e is the uniaxial logarithmic strain, s�e� is the corresponding uniaxial true stress and
x�e� is the corresponding uniaxial backstress.

The method can be extended to investigate the properties of thin ®lms on substrates as shown in

Fig. 2. We suppose the depth-load behavior �P�h� for pure substrate material as well as the depth-load

behavior �̂P�h� of the composite thin ®lm Ð substrate to be known. To these data it is possible to assign
a depth-load behavior P̂�h� for the (pure) bulk ®lm material. The operator, which enables the
assignment is the solution of a second inverse problem denoted as box IP2 in Fig. 2. After establishing
the depth-load trajectory P̂�h�, the constitutive parameters can be obtained as solution of an inverse
problem of type 1.

2. Constitutive equations (®nite deformations)

We assume elastic±plastic constitutive properties for both, the substrate and the ®lm material. In
particular, the same type of ®nite deformation plasticity laws, but with di�erent material parameters, are
assumed to apply. This type of constitutive equations was used in previous works as well (see Huber
and Tsakmakis, 1999b) and read as follows:

S
r
� ÇSÿ LSÿ SLT � C

�
Dÿ Dp

�
, �1�

F�t� � �F�S, xxx, k� �
����������������������������������������������
3

2
�Sÿ xxx�D��Sÿ xxx�Dÿk

r
, �2�

Fig. 2. Sketch of the concept to solve the inverse problem.
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Dp � _s

����
3

2

r
�Sÿ xxx�D
k�Sÿ xxx�Dk , �3�

_k � ÿgÿ b�kÿ k0�
�
_s, �4�

xxx
r
� Çxxxÿ Lxxxÿ xxxLT � cDp ÿ b_sxxx, �5�

_s � ���������������
Dp � Dp

p (
> 0 for F � 0 & L �

�
_F
�

Fp�const> 0
� 0 otherwise

: �6�

In Eq. (1), bold-face capital letters denote second-order tensors while C is the fourth-order isotropic
tensor:

C � E

1� n
E� En
�1� n��1ÿ 2n�1
 1: �7�

Here, E denotes Young's modulus, n is Poisson ratio, while E and 1 are the identity tensors of fourth-
and second-order, respectively. In the following, the value of n is assumed to be given by 0.3. The
symbol 
 denotes the dyadic (tensor) product. Further, AD and AT represent the deviator and the
transpose of the second order tensor A, respectively, A � B is the usual inner product between the second
order tensors A and B and kAk is Euclidean norm of A, i.e. kAk � �����������

A � Ap
: The quantity S denotes

Cauchy stress tensor and xxx is the back-stress tensor. Moreover, L is the spatial velocity gradient with
symmetric part D � 1

2�L� LT� and s is the arclength of plastic deformation. The scalar variable _s has to
be determined from the so-called consistency condition _F � 0: Eqs. (4) and (5) represent the laws
governing isotropic and kinematic hardening, respectively, the variable responsible for isotropic
hardening being denoted by k. Finally, k0, g, b, c and b denote material parameters.
The constitutive equations (1)±(6) have been incorporated as a user supplied subroutine into the

Finite Element code ABAQUS. The integration algorithm used for the local iterations is based on the
method of Hughes and Winget (1980) as well as the method of elastic predictor Ð plastic corrector (for
more details see Diegele et al., 1998).

Note that instead of the plasticity law (1)±(6) other type of constitutive equation like those e.g.
derived on the basis of the scale invariance approach (Aifantis, 1987, 1995) can also be employed but
this issue may be taken up in a future study.

It can be shown that for uniaxial tension loading, Eqs. (2), (4) and (5) imply

s � S11 � k� x, �8�
with

k � k0 � g
b
�1ÿ eÿbs �, �9�

x � x11 ÿ x22 �
c

bÿ 2

ÿ
1ÿ eÿ�bÿ2�s

�
� c

2�b� 1�
ÿ
1ÿ eÿ�b�1�s

�
: �10�

In these equations, we write A11 for the uniaxial component of a second-order tensor A. Characteristic
properties of the hardening behavior may be represented by the stress DS de®ned by
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DSM lim
s41sÿ k0 � g

b
� 3

2

c

b
f�b�, �11�

f�b� � b2

b2 ÿ bÿ 2
: �12�

Of course, when characterizing hardening properties, one may omit the nonlinear function f �b� in Eq.
(11). Thus, in what follows we will use the stresses

DsM
g
b
� 3

2

c

b
, �13�

DxM
3

2

c

b
�14�

and the moduli

s 0M lim
s40

ds
ds
� g� 3

2
c, �15�

x 0M lim
s40

dx
ds
� 3

2
c �16�

Also, it is convenient to introduce the vector of material parameters

qM�E, k0, g, b, c, b�: �17�

3. Neural networks

Arti®cial neural networks represent a quali®ed tool for solving complex inverse problems in
computational mechanics. An overview about some relevant applications is given by Yagawa and
Okuda (1996) and Sumpter and Noid (1996). As outlined by Huber and Tsakmakis (1999a), a neural
network consists of neurons connected with links to a highly parallel structure. Each neuron possesses a

Fig. 3. Sketch of a multilayer feed forward neural net.
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local memory and can carry out localized information processing operations. In general, each neuron
has multiple inputs and a single output value to mimic the biological brain neuron.

Presenting training patterns to the network, which consists of the input values xi and the related
desired output values dl, the error for each pattern can be computed from the actual output yl (see
Fig. 3). Using a backpropagation algorithm, the synaptic weights wij, which represent the links between
the neurons are adjusted appropriately. Thus, the error of the output values is minimized and the
network has been taught the relation between input and output values.

The neural network simulations are carried out using the SNNS (1995) code. The relevant theory of
backpropagation and preparation of the data in the present context is described by Huber and
Tsakmakis (1999a, 1999b).

4. Determination of material properties for bulk materials

The neural networks used by Huber and Tsakmakis (1999b), representing the operator IP1 in Fig. 2,
are functions able to determine the material parameters from a given depth-load trajectory of a bulk
material. They have been implemented in the program INDENTIFY which extracts the necessary data
from the measured depth-load response, generates the input data, calls the neural networks and
calculates the sought material parameters. This method is able to determine the constitutive properties
for bulk materials only in the present state. Three types of input data from the depth-load response has
to be provided to INDENTIFY (see Fig. 4).

The ®rst type of input data is represented by the loading response Pl�h� which contains information
about the sum of isotropic and kinematic hardening, i.e. the monotonic strain±stress response. The
second type of input data is the unloading sti�ness SMdPu=dhjht at the beginning of an unloading,
which is related to the elastic properties of the material. The third type of input data is the hysteresis
geometry, which results from an unloading reloading cycle and indicates the kinematic hardening
response. It has been shown by Huber and Tsakmakis (1999a), that the hysteresis geometry can be
described conveniently with the dimensionless quantities for the opening along the load axis (see Fig. 4)

DP�M
DP
Pt
� Pr�h� ÿ Pu�h�

Pt
, h 2 �hr, ht � �18�

Fig. 4. Sketch of the depth-load trajectory for cyclic indentation.
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and the width along the depth axis

Dh�M
Dh
ht
� h

ÿ
P�u � P�

�ÿ h
ÿ
P�r � P�

�
ht

, �19�

where h�P�u � P�� is the unloading depth and h�P�r � P�� is the reloading depth at a given load
P�MP=Pt: The input data for the neural networks are de®ned to be values Pl�h�Mh=R� and
DP��d�M�hÿ hr�=�ht ÿ hr�� for some h� and d�, respectively, as well as Dh��P�MP=Pt� for some P�:

The input data of the loading response are

Pl,i � Pl

ÿ
h�i
�
, �20�

with

h�i �
�
6:25 � 10ÿ4, 1:25 � 10ÿ3, 2:5 � 10ÿ3, 5 � 10ÿ3, 0:01, 0:02, 0:04, 0:06

	
, 1RiR8: �21�

The hysteresis loops may be inserted in the range 0:02Rh�t R0:1: In the present work, ®ve hysteresis
loops at

h�t,i � f0:02, 0:04, 0:06, 0:08, 0:1g, 1RiR5 �22�

were inserted. As outlined by Huber and Tsakmakis (1999a), the hysteresis loops for these ht-values do
not e�ect the form of the loading response. In other words, the values Pl, i for i � 6, 7, 8 are the same as
if no hysteresis loops would have been inserted. The data for the hysteresis needed are

DP�i � DP�
ÿ
d�i
�
, �23�

d�i � f0:25, 0:5, 0:75g, 1RiR3, �24�

Dh�i � Dh�
ÿ
P�i
�
, �25�

P�i � f0:25, 0:5, 0:75g, 1RiR3: �26�
In order to determine the material parameters Ãq of the ®lm with INDENTIFY, the above values of the
loading response, of the hysteresis loop and in addition, of the unloading sti�ness have to be known for
the bulk ®lm material. As mentioned in Section 1, the bulk ®lm material is a ®ctitious material, which
has the same elasticity and hardening properties as the real ®lm material (see dashed lines in Fig. 2).

5. Spherical indentation of ®lms on substrates

Let us denote P and R be the force acting on the sphere and the radius of the sphere, respectively,
and let h be the indentation depth. The thickness of the ®lm will be denoted by t. Further, let us
consider a loading history consisting of loading until h � ht, P � Pt, unloading until P � 0 with h � hr,
and reloading until h � ht (see Fig. 4). Note in passing, that beside the radius of the indenter R, the ®lm
thickness t is another characteristic length of the problem in the case of a ®lm on a substrate (see Fig. 5).
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5.1. Finite element simulations

All Finite Element calculations performed in this work are based on the Finite Element mesh with
eight-node axisymmetric elements, described in detail elsewhere (see Huber and Tsakmakis, 1998).
However, this mesh is slightly modi®ed, in order to insert the ®lm on the top. The modi®ed mesh is
displayed in Fig. 6.

The number of relevant material parameters for the creation of the training patterns is six for each
material, namely �E, k0, g, b, c, b). As mentioned previously, the Poisson ratio n is supposed to be
constant n � 0:3 in the present paper. For all Finite Element simulations, the radius of the spherical
indenter and the thickness of the ®lm are chosen to be R � 5 mm and t � 1:12 mm, respectively. Thus,
our calculations are based on the ®xed ratio t=R � 0:224: For a maximum indentation depth of

Fig. 5. Geometry of spherical indentation of a ®lm on a substrate.

Fig. 6. Finite Element mesh for spherical indentation of a ®lm on a substrate.
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h=R � 0:1, the indenter penetrates almost half of the ®lm thickness which requires to deal with
geometrical nonlinear theories.

As outlined by Huber and Tsakmakis (1999b), for keeping the number of necessary simulations small,
the parameters �E, k0, g, b, c, b� have to be chosen randomly from the given intervals. For the purpose
of the present study, these intervals are de®ned as in Table 1. In the following, the symbol (-) is used to
denote non-dimensional quantities with no scaling.

It remains to develop a method for assigning a depth-load trajectory of the bulk ®lm material to
given depth-load trajectories of the composite (®lm on substrate) and the substrate. This will be done in
the following for the loading responses and the hysteresis loops separately.

5.2. Loading response

The load for the composite �̂Pl (®lm on substrate) at a depth h is dependent on the material
parameters of the ®lm Ãql� �Ê, k̂0, ŝ 0, Dŝ�, the material parameters of the substrate Ãql� � �E, �k0, �s 0, D �s�
and the geometry:

�̂Pl � �̂Pl

ÿ
Ãql, Åql, R, t, h

�
: �27�

The function �̂Pl in Eq. (27) is given implicitly by calculating the values of �̂Pl at prescribed points � Ãql, Åq,
R, t, h� via Finite Element simulations.

Similarly, for the bulk ®lm material and bulk substrate material, the relations

P̂l � P̂l

ÿ
Ãql, R, h

� �28�

and

Table 1

Parameter basis for the ®lm and substrate material used in the ®nite element simulations

Parameter Range

E (GPa) 100.0, 200

k0 (MPa) 50.0±300

Ds=k0 (-) 0.2±300

g=�bDs� (-) 0.0±1.0

g (GPa) 3.0±30

c (GPa) 2±20

Table 2

Input- and output-data for LoadNet

Inputs x i

�̂Pl,i

�Pl,i
i � 1, . . . , 8

�̂Pl,i

�̂Pl,8

i � 1, . . . , 7
�Pl, i

�Pl,8
i � 1, . . . , 7 ht

R

�̂Pt
�Pt

�̂S�ht �
�S�ht �

Outputs yl
P̂l,i

P̂
�est �
l, i

i � 1, . . . , 8 P̂t

P̂
�est �
t

Ŝ�ht �
�̂S�ht �
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�Pl � �Pl

ÿ
Åql, R, h

� �29�

hold, respectively.
Evidently, the unloading sti�nesses at h � ht for the composite, the bulk ®lm and the bulk substrate

material satisfy equations of the form

�̂S � �̂Sl

ÿ
Ãql, Åql, R, t, ht

�
, �30�

Ŝ � Ŝl

ÿ
Ãqql, R, ht

�
, �31�

�S � �Sl

ÿ
Åql, R, ht

�
, �32�

respectively.
Now suppose that values P̂l,i, �Pl,i at points hi, i � 1, . . . , n, as well as values Ŝ, �S, at ht are given. For

these values, we assume that Eqs. (28) and (31) as well as Eqs. (29) and (32) can be solved for Ãql and Åql,
respectively, to give

Ãql � Q̂l

�
hi, P̂l,i, Ŝ, R, ht

�
, �33�

Åql � �Ql

ÿ
hi, �Pl,i, �S, R, ht

�
: �34�

In the following, we set n � 8, the values h1, . . . , h8 being given in Eq. (21). For h�t (respectively ht� one
may use one of the values given in Eq. (22). Thus, the values hi being chosen ®xed, Eqs. (33) and (34)
may be rewritten as

Ãql � Q̂l

�
P̂l,i, Ŝ, R, ht

�
, �35�

Fig. 7. Error distributions for P̂l,i, P̂t and Ŝ : (a) Number of the training patterns N � 346, (b) Number of the test patterns N � 29:
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Fig. 8. Some test examples of loading responses: (a) soft ®lm on hard substrate; (b) approximately same hardness; (c) hard ®lm on

soft substrate. Light-hand side: �̂P
�est�
l values for given responses of ®lm and substrate. Right-hand side: determination of the bulk

®lm response using LoadNet.
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Åql � �Ql

ÿ
�Pl,i, �S, R, ht

�
, �36�

respectively. On substituting Eqs. (35) and (36) in Eq. (27), we obtain for �̂Pl a relation of the form

�̂Pl,i � �̂P
�
P̂l,i, �Pl,i, Ŝ, �S, R, ht

�
�37�

For given loading responses and unloading sti�nesses of the composite and the substrate, respectively,
one obtains analogous

P̂l,i � P̂
�

�̂Pl,i, �Pl,i, �̂S, �S, R, ht

�
, �38�

where the arguments of P̂ represent the necessary inputs of the neural networks to be developed.
In order to obtain neural networks appropriate for arbitrary indenter radii, the input- and output

quantities must be given in dimensionless form. Generally, to de®ne dimensionless quantities in a form
suitable to the neural network is a matter of experience. It has been turned out, that the best results are
achieved for the dimensionless input and output quantities given in Table 2. The quantity P̂

�est�
l,i in

Table 2 is de®ned by

P̂
�est�
l,i � P̂

�est�
l �hi �, �39�

Fig. 9. Error distribution for the bulk ®lm hysteresis DP̂i and Dĥi : (a) Number training patterns N � 324; (b) Number of test pat-

terns N � 28:

Table 3

Input- and output-data for HystNet

Inputs x i

�̂Pl,i

�̂Pl,8

i � 4, . . . , 7
�Pl,i

�Pl, 8
i � 4, . . . , 7

�̂Pl, 8

�Pl, 8

ht
R

�̂Pt
�Pt

�̂S�ht �
�S�ht �

D �̂P1

D �̂P2

D �̂P2

�̂Pt

D �̂P3

D �̂P2

D �P1

D �P2

D �P2
�Pt

D �P3

D �P2

D �̂P2

D �P2

D �̂h1

D �̂h2

D �̂h2
ht

D �̂h3

D �̂h2

D �h1
D �h2

D �h2
ht

D �h3
D �h2

D �̂h2
D �h2

Outputs yl
DP̂1

D �̂P2

DP̂2

D �̂P2

DP̂3

D �̂P2

Dĥ1
D �̂h2

Dĥ2
D �̂h2

Dĥ3
D �̂h2
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where

P̂
�est�
l �

�̂Pl
�Pl

2 �Pl ÿ �̂Pl

: �40�

To motivate Eq. (40) we suppose the values of �Pl and P̂l at a given h to be known. Then, a
corresponding value for �̂Pl at the same h can be estimated by the formula

�̂P
�est�
l � P̂l

 
�Pl

�Pl � P̂l

!
� �Pl

 
P̂l

�Pl � P̂l

!
� 2 �PlP̂l

�Pl � P̂l

: �41�

Actually, Fig. 8 shows that Eq. (41) estimates the values of �̂Pl appropriately. On the other hand, one
can consider the values of �Pl and �̂Pl to be known so that, from Eq. (41), the value of P̂l can be
estimated by Eq. (40).

A neural network, denoted as LoadNet, is created using the input and output data displayed in
Table 2. Besides the 35 neurons corresponding to the 25 input- and the 10 output data, LoadNet
possesses two hidden layers with 20 and 15 neurons, respectively.

The resulting mean error after 1000 training cycles (epoches) was 0.00047 for 346 training patterns
and 0.00093 for 29 test patterns. To obtain a more detailed overview about the error distribution, the
relative error el,n for a given output neuron l and pattern n, de®ned by

el,n � jyl,n ÿ dl,n
dl,n

j, �42�

is plotted against the position n=N in the ascending sequence of all N values of el,n: For each n, the
quantities yl,n and dl,n are de®ned as in Section 3. The resulting plots for the training and test patterns
are shown in Fig. 7(a) and (b), respectively. It can be seen that about 80% of the load values have an
error less than 10% and 80% of the sti�ness values have an error less than 5% for training and test
patterns. Some examples of determined loading responses for the bulk ®lm using LoadNet are given in
Fig. 8(a)±(c).

5.3. Hysteresis loops

It was pointed out by Huber and Tsakmakis (1999a, 1999b), that the existence of hysteresis loops in

Table 4

Used and identi®ed parameter sets for test example in Figs. 8(a) and 11(a)

Sa/Fb/Ic h�t (-) E (GPa) k0 (MPa) s 0 (MPa) Ds (MPa) x 0 (MPa) Dx (MPa)

S ± 200 369 43897 1064 24525 142

F ± 100 107 29729 186 15894 64

I 0.02 91 138 15100 164 9300 60

I 0.04 107 132 13800 177 7727 64

I 0.06 107 130 13710 183 7083 70

I 0.08 103 131 15250 175 7336 72

I 0.10 93 135 17860 166 9010 68

a S: Substrate.
b F: Film.
c I: Identi®ed.
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Fig. 10. Examples of identi®cation of the bulk ®lm hysteresis geometry using HystNet corresponding to Fig. 8(c): (a) Opening DP̂i;

(b) Width Dĥi:
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the depth-load trajectory indicates the existence of kinematic hardening in the material response.
However, the size of the hysteresis loops depends also on Young's modulus and the isotropic hardening
inherent in the material. Generally, in order to gain the hysteresis loop geometry of the bulk ®lm
material, the hysteresis loop geometries, the unloading sti�ness and the loading responses of both the
substrate material and the composite, are needed.

Next, we proceed to determine the hysteresis loop geometry of the bulk ®lm material by using a
neural network, which is denoted by HystNet. It has been turned out, that the best results with HystNet
are obtained, when use is made of the dimensionless input and output data given in Table 3. The

quantities D �̂P2 and D �̂h2, corresponding to the composite material, are de®ned as in Eqs. (23)±(26).
According to Table 3, HystNet has 26 neurons in the input layer and six neurons in the output layer.

Fig. 11. ŝ�s� and x̂�s� relations identi®ed from the bulk ®lm depth-load trajectories using INDENTIFY. The example corresponds

to the test pattern discussed in Fig. 8(a).

Fig. 12. ŝ�s� and x̂�s� relations identi®ed from the bulk ®lm depth-load trajectories using INDENTIFY. The example corresponds

to the test pattern discussed in Fig. 8(b).
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Additionally, two hidden layers with 18 and 10 neurons, respectively, are incorporated in HystNet. After
training, the mean error was 0.00072 for 324 training patterns and 0.00165 for 28 test patterns.

Fig. 9 shows the distribution of the relative errors which are lower than 20% for 80% of the training
patterns and lower than 30% for 80% of the test patterns. However, it must be noted, that the large
values for the relative error are obtained for hysteresis loops with very small thickness. Nevertheless, it
is discussed below that for such hysteresis loops, the identi®ed material parameters are physically
acceptable. This comes from the fact, that hysteresis loops with very small thickness are associated with
vanishing small parameters in the kinematic hardening law. Consequently, large relative errors for so
vanishing small material parameters cannot be physically important.

In order to demonstrate the capabilities of HystNet, Fig. 10 displays the determined opening values
DP̂i=R

2 and the determined width values Dĥi=R for case (c) in Fig. 8 (hard ®lm on soft substrate). This
is the most unfavorable case because of the very soft hardening behavior of the substrate material,

Fig. 13. ŝ�s� and x̂�s� relations identi®ed from the bulk ®lm depth-load trajectories using INDENTIFY. The example corresponds

to the test pattern discussed in Fig. 8(c).

Table 5

Used and identi®ed parameter sets for test example in Figs. 8(b) and 12

Sa/Fb/Ic h�t (-) E (GPa) k0 (MPa) s 0 (MPa) Ds (MPa) x 0 (MPa) Dx (MPa)

S ± 100 320 31553 784 14099 542

F ± 200 369 33399 320 9798 58

I 0.02 188 310 45540 392 23580 131

I 0.04 187 306 44280 412 36680 137

I 0.06 191 302 42800 435 22940 54

I 0.08 201 283 78720 436 60270 97

I 0.10 201 252 ± ± ± ±

a S: Substrate.
b F: Film.
c I: Identi®ed.
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compared to the hardening behavior of the ®lm material. From Fig. 10 it can be seen that the hysteresis
geometry (opening and width) is accurately determined in the whole depth range 0:02Rht=RR0:1:

5.4. Strain±stress response

Having established the load response and the hysteresis loop geometries, the whole inverse problem is
completed by applying IDENTIFY to determine Ãq: Following the work of Huber and Tsakmakis
(1999a, 1999b), several unloading±reloading cycles were inserted at the depths h�t,i, i � 1, . . . , 5, where h�t,i
is de®ned in Eq. (22).

The results are displayed in Figs. 11±13. The circles and crosses plotted against the s-axis denote ŝ
and x̂ values, respectively, which di�er slightly due to di�erent hysteresis loops. As indicated in the
previous section, the identi®cation scatter increases with increasing hardness ratio, i.e. with increasing
hardening characteristic of the ®lm material and decreasing hardening characteristic of the substrate
material. The results in Figs. 11±13 are related to the test examples of Fig. 8(a)±(c), respectively. For
these test examples, the smallest and the largest hardness ratio corresponds to Fig. 8(a) and (c),
respectively. Tables 4±6 display the used and the identi®ed sets of parameters associated to Fig. 8(a)±(c).

Generally, from Tables 4±6 and Figs. 11±13 can be seen, that a deviation of k0 is compensated by a
corresponding change of the modulus s 0: The independency of the indentation depth shows that the
neural networks LoadNet and HystNet are able to extract the ®lm properties from the provided data in
form of the bulk ®lm depth-load trajectory.

6. Conclusions

The studies of the present paper have shown that constitutive properties of thin ®lms as well as
material parameters in constitutive models assumed to govern the response of thin ®lms may be
determined by using neural networks. The key point of the method developed is the assumption of a
®ctitious depth-load trajectory for the bulk ®lm material. Calculated examples illustrate that the method
proposed is able to solve the so-called inverse problem with realistic e�ort. Clearly, the present work has
to be understood as a ®rst step towards investigating constitutive properties of thin ®lms on substrates.

Table 6

Used and identi®ed parameter sets for test example in Figs. 8(c) and 13

Sa/Fb/Ic h�t (-) E (GPa) k0 (MPa) s 0 Ds x 0 (MPa) Dx (MPa)

S ± 200 153 29077 79 9522 39

F ± 200 320 31554 784 14100 542

I 0.02 196 401 28190 777 15710 436

I 0.04 186 410 32020 748 16020 516

I 0.06 196 400 33250 763 16720 640

I 0.08 187 393 32930 786 15470 672

I 0.10 197 423 23320 755 15590 639

a S: Substrate.
b F: Film.
c I: Identi®ed.
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For instance, further studies have to be carried out in order to analyze the e�ect, e.g. of viscosity or of
intrinsic stresses.
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